eRD18 - Precision Central Silicon Tracking & Vertexing for the EIC

FY18 Report and FY19 Proposal

P. Allport, L. Gonella, <u>P. Jones</u>, P. Newman, H. Wennlöf

eRD18: Motivation

To develop a detailed concept for a central silicon vertex detector for a future EIC experiment, exploring the potential advantages of depleted MAPS (DMAPS) technologies

Science drivers

Open heavy flavour decays – **high position resolution**Precision tracking of high Q² scattered electrons – **low mass**

WP1: Sensor development

Exploiting on-going R&D in Birmingham into DMAPS to investigate potential solutions for the EIC

WP2: Silicon detector layout investigations

Specifications: numbers of layers, layout and spatial resolution to achieve required momentum resolution and vertex reconstruction

x reconstruction

Charm observables in the EIC White Paper

- Leading order charm production process is γg fusion
- Charm production provides sensitivity to:
 - I. The gluon contribution to spin of the nucleon
 - Charm sensitive to ∆g in e-p scattering
 - II. Physics of high gluon densities and low-x in nuclei
 - Measurement of F₂^{charm} sensitive to nuclear gluon density in e-A
 - III. Hadronisation and energy loss in cold nuclear matter
 - Quark mass dependence and nuclear modification

EIC promises unprecedented precision in charm observables in e-p/e-A

- Charm reconstruction requires identification of displaced vertices
 - Challenging due to decay lengths ~ 100 μm
 - Likely to place strongest constraints on the tracker design
 - Potential importance of low-p_T (standalone) tracking

A. Accardi et al., Eur. Phys. J. A (2016) 52:268

EIC Detector Concepts

Beast detector layout -4< -4<: Tracking & e/m Calorimetry (hermetic coverage) | Nadronic calorimeters | e/m calorimeters | e

Asymmetric IP location within solenoid and different endcaps Maximizes solid angle for electron endcap More space for tracking and ID of high-momentum forward-going hadrons Makes full use of 50 mrad crossing angle and 2 Tm dipole Muon chambers Sci-Fi EM calorimeter Top Modular RICII Bricii Am long inner magnet coil solenoid field 1.5 - 3 Tesla solenoid field 1.5 - 3 Tesla solenoid field 1.5 - 3 Tesla EIC User Group Meeting, 1/7/2018 14 Defferson Lab

Pawel Nadel-Turonski

Based on ALICE ITS inner layer design

- Si vertex and tracker detectors in central and forward regions
- Seek high resolution, high s/n, low mass, low power solution
 - applicable to both eRHIC and JLEIC

white the

MAPS Example: ALICE ITS Upgrade for LHC Run 3

- ALICE developed the ALPIDE monolithic active pixel sensor
 - Optimised for Pb-Pb collisions at the LHC
 - High spatial resolution (small pixels) and low power digital readout
 - Features a small collection electrode = small detector capacitance
 - → low power, low noise, low crosstalk, fast readout
 - Partially depleted; charge collection by drift & diffusion

Inner Barrel = 0.3% X/X₀ per layer Outer Barrel = 0.8% X/X₀ per layer 50 kHz interaction rate (Pb-Pb) 200 kHz interaction rate (pp)

 $0.18~\mu m$ CMOS TowerJazz $28~x~28~\mu m^2$ pixel pitch $4~\mu s$ integration time Power density < 50 mW cm⁻²

isity < 50 mvv cm⁻²

WP1: Sensor development

- Towards an EIC-specific sensor
 - Explore ongoing developments toward (fully) depleted MAPS (DMAPS)
 - Aim for improved spatial resolution
 - Smaller pixels, low power/mass (and careful mechanical design)
 - Consider readout requirements for the EIC
 - Integration time and time-stamping capability
- Excerpt from EIC Detector Requirements and R&D Handbook

"The EIC would certainly benefit in **improvements in the integration time** as well as in a further reduction of the energy consumption and material budget going towards **0.1-0.2% radiation length per layer**. Timing-wise the ultimate goal of this technology would be to **time stamp the bunch crossings** where the primary interaction occurred. [...] Concerning spatial resolution the simulations indicate that a **pixel size of 20 microns** must be sufficient."

Electron-Ion Collider Detector Requirements and R&D Handbook, v4

white the

WP1: Depleted MAPS

- Main advantage is charge collection by drift
 - Achieved by full depletion of the substrate (HV/HR CMOS)
 - Faster and more complete charge collection
 - Less charge sharing between pixels (... also improved rad. hardness)
- Two approaches achieve to full depletion
 - Implement a large collection electrode
 - Approach followed in almost all technologies
 - Disadvantage: large capacitance
 - Introduce a deep planar junction (only in TJ modified process)
 - Advantage: small collection electrode (few μm²)

WP1: Depleted MAPS technology survey

- State-of-the-art DMAPS prototypes
 - Mainly developed for application at the HL-LHC
 - Optimised for high particle fluences, radiation hardness and fast readout

		——— DMAPS ——		\longrightarrow
ALPIDE	MALTA	TJ-MONOPIX	LF_MONOPIX	ATLASpix_Simple

	ALPIDE	MALTA	TJ-MONOPIX	LF_MONOPIX	ATLASpix_Simple
Experiment	ALICE ITS	ATL	ATLAS ITk pixel Phase II (outermost layers only)		
Technology	TJ 180 nm	Modified	TJ 180 nm	LF 150 nm	AMS 180 nm
Substrate resistivity [kOhm cm]	> 1	(epi-layer 18-2	.5 um)	> 2	0.08 - 1
Collection electrode	small	small	small	large	large
Detector capacitance [fF]		<5		Up	to 400
Chip size [cm x cm]	1.5 x 3	2 x 2	1 x 2	1 x 1	0.325 x 1.6
Pixel size [um x um]	28 x 28	36.4 x 36.4	36 x 40	50 x 250	40 x 130
Integration time [ns]	4 x 10 ³		<25		
Particle rate [kHz/mm²]	10		10 ³		
Readout architecture	Asynch	ronous	Synchronous, column drain		n drain
Analogue power [mW/cm ²]	5.4	< 120	~ 110	~ 300	N/A
Digital power [mW/cm ²]	31.5/14.8	N/A	N/A	N/A	N/A
Total power [mW/cm ²]	36.9/20.2	N/A	N/A	N/A	N/A
NIEL [1MeV n _{eq} /cm ²]	1.7 x 10 ¹³		1.0 x 10 ¹⁵		
TID [Mrad]	2.7		50		

Market Market

WP1: EIC-specific DMAPS specifications

- Preliminary specifications
 - Pixel pitch ≤ 20 μm
 - Interaction rate = 500 kHz
 - Integration time ≤ 2 μs
- To minimise power
 - Small collection electrode
 - Asynchronous readout
- Fast-timing capability
 - Timestamp each bunch crossing
 - Depends on facility
 - eRHIC = 9.38 MHz
 - JLEIC = 748.5 MHz
 - 100 ns 1 ns resolution
 - Synergy with eRD3/6

	EIC DMAPS sensor		
Detector	Vertex and tracking	Outer timing layer	
Technology	TJ or s	imilar	
Substrate resistivity [kOhm cm]	>	1	
Collection electrode	sm	nall	
Detector capacitance [fF]	<	5	
Chip size [cm x cm]	Reticule size [cm ²]		
Pixel size [um x um]	20 x 20	TBD	
Integration time [ns]	<2 x 10 ³	< 100 (eRHIC) <1 (MEIC)	
Particle rate [kHz/mm²]	TBD		
Readout architecture	Asynchronous	TBD	
Analogue power [mW/cm²]	TBD	TBD	
Digital power [mW/cm²]	TBD	TBD	
Total power [mW/cm²]	TBD TBD		
NIEL [1MeV n _{eq} /cm ²]	10 ¹⁰		
TID [Mrad]	TBD		

WP1: TJ Investigator Chips

- Designed to study charge collection properties and detection efficiency
- Implemented in standard (v1) and modified process (v1 and v2)
- 134 matrices of 10 x 10 pixels
 - Different pitch, electrode size, electrode spacing
- TowerJazz investigator chip v2 has improvements for charge collection
 - Separate bias for p-substrate and the p-well
 - Faster readout
 - Reduced electrode spacing for large pitch pixels

Pixel: 28 x 28 μm² Electrode: 2 x 2 μm² Electrode spacing: 3 μm Available pixel matrices

0-35: 20 x 20 μm²
 36-57: 22 x 22 μm²
 58-67: 25 x 25 μm²
 68-103: 28 x 28 μm²

104-111: 30 x 30 μm²

112-123: 40 x 40 μm²

124-133: 50 x 50 μm²

Electrode sizes

 $1-5 \mu m^2$

Electrode spacing 1-5 μm typically

(except 50 x 50 μ m² pixels in v1)

WP1: Ongoing work

- Working with the TowerJazz investigator v2
 - Irradiations performed at MC40 cyclotron in Birmingham in February
 - 2 chips available irradiated to 2x10¹⁵ 1 MeV n_{eq}/cm²
 - Setup almost ready to start testing (new carrier board)
 - Waiting to receive an un-irradiated chip for comparison

Reset signal provided by function generator Amplifier is a CIVIDEC inverting 2 GHz / 20 dB C1-HV Nitrogen flushed and cooled to -30 C

WP2: Simulations

Geometry: TPC + VST + beam pipe + magnetic field (B = 1.5 T)

TPC parameters

Inner radius = 20 cm Outer radius = 80 cm 250 µm position resolution

VST parameters

Layer #0 radius = 2.3 cm 0.3% X/X₀ Layer #1 radius = 4.6 cm 0.3% X/X₀ Layer #2 radius = 14 cm 0.8% X/X₀ Layer #3 radius = 16 cm 0.8% X/X₀ Layer #4 radius = 18 cm 1.6% X/X₀ 20 x 20 μ m² - 40 x 40 μ m² pixels

Beam pipe parameters

Material = beryllium Outer radius = 1.8 cm Thickness = 0.8 mm

WP2: Simulations

Detector Geometry

WP2: Do meson production in Pythia e-p collisions

Kinematic distributions (20 GeV x 250 GeV)

D ⁰ mesons	accept
η < 1	26.7%
η < 2	58.5%

WP2: Do decay daughters

Kinematic distributions (20 GeV x 250 GeV)

$$D^0 \rightarrow K^-\pi^+$$

D ⁰ daughters	accept
Both central	22.2%
Both forward	11.2%
One central One forward	28.4%

Central = $|\eta| < 1$ Forward = 1 < $|\eta| < 2$

WP2: Pixel size (spatial resolution)

- Simulation: TPC + 4 layer VST
 - Pions generated from (0,0,0) and $|\eta| < 1$

- Momentum resolution is primarily a function of track length
- Smaller pixels improve pointing resolution

white the

WP2: Parameterisation

- Simulation: TPC + 4 layer VST (20 x 20 mm² pixels)
 - Pions generated from (0,0,0) and $|\eta| < 1$

$$\frac{\sigma_{p_T}}{p_T} = \sqrt{p_0^2 + (p_1, p_T)^2}$$

$$\sigma_{DCA2d}(\mu m) = \sqrt{p_0^2 + \left(\frac{p_1.1 \text{ GeV/c}}{p_T}\right)^2}$$

WP2: Timing layer

- Simulation: TPC + 4 or 5 layer VST (20 x 20 mm² pixels)
 - Pions generated from (0,0,0) and $|\eta| < 1$

Added timing layer (1.6% X/X₀) has minimal impact on performance

war had

eRD18: FY19 Project Proposal

- WP1: Sensor development
 - Continue evaluation of TJ technology
 - CERN-TJ Investigator 2 chip
 - ATLAS MALTA chip
 - Additional designs will be available in the autumn
 - Work with chip designer at RAL
 - Simulate possible readout architectures
 - Explore tradeoff between power and pixel size
 - Provide realistic input into EIC DMAPS specifications
- WP2: Simulations
 - Explore interface with forward/backward disks (with eRD16)
 - Implement vertex fit in EicROOT
 - More detailed study of charm reconstruction
- WP1 & WP2: Collaboration with eRD16
 - Continue monthly Skype meetings and plan one face-to-face meeting
 - Also considering a silicon tracking workshop

ce-to-face meeting

eRD18: Comment on DMAPS strategy

- Only considering options in TJ modified process
 - For low power and fast readout require a single, small collection electrode

Pixel: 20 x 20 μm² Electrode: 3 x 3 μm² Electrode spacing: 3 μm

- Fully depleted sensor + small collection electrode = TJ modified process
- Evaluate technologies and pixel layout configuration with prototypes available through Birmingham involvement in DMAPS projects
- Explore readout architectures for an EIC DMAPS sensor to optimize pixel size and power consumption against requirements from simulations
- No longer considering structures from our DECAL and RD50 projects
 - These achieve full depletion either using multiple collection electrodes or a single large collection electrode that would lead to higher pixel capacitance and higher power consumption

white the

eRD18: FY18 Resources Summary

FY18 expenditure

Awarded \$98,611 (60% descope option)

Scenario	PDRA	Travel	Total (GBP)	Total (USD)
100%	£107,394	£10,000	£117,394	\$164,352
80%	£83,915	£10,000	£93,915	\$131,481
60%	£60,436	£10,000	£70,436	\$98,611

- Decided to use PDRA funds to consult with a chip designer
- 4-6 months of designer time at RAL
- Will be carried over into FY19 (Sep-Dec)
- Needed to understand sensor requirements first

eRD18: FY19 Resources Summary

Existing resources

- Staff effort: Gonella (0.1 FTE), Jones (0.05 FTE), Newman, Allport
- PhD student (Håkan Wennlöf) since October 2017
- Access to technology investigators (CERN-TJ, ATLAS)
- Access to MC40 cyclotron for irradiation studies

FY19 funding request

1.	Additional 3-4 months chip designer time at RAL	\$60,000
2.	Readout equipment for sensor tests	\$6,000
3.	Travel $(4 \times 2 \times £1,250) = £10k$	<u>\$14,000</u>
То	tal	\$80,000

Scenario	Chip designer	Equipment	Travel	Total (USD)
100%	\$60,000	\$6,000	\$14,000	\$80,000
80%	\$44,000	\$6,000	\$14,000	\$64,000
60%	\$24,000	\$6,000	\$14,000	\$48,000

war har

Backup Slides

Open charm reconstruction

Signature is displaced (secondary) decay vertex

Particle	Decay	Branching	c _τ [μm]
D ₀	K ⁻ π ⁺	3.9%	123
D ⁺	$K^-\pi^+\pi^+$	9.5%	311
D*+	$D^0\pi^+_{slow}$	67.7%	

$$D^{*_{+}} \rightarrow D^{0}\pi_{slow}^{+} \rightarrow \left(K^{-}\pi^{+}\right)\pi_{slow}^{+}$$

- Requires excellent impact parameter resolution in $r-\phi$ and z
 - Dominated by position and resolution of innermost tracking layer
 - Close as possible to beam pipe (caution: beam backgrounds)
 - Highest possible spatial resolution (small pixels)

WP2: Simulations

Radiation length scan in EicRoot

η = 0	X/X ₀ [%]
Beampipe	0.2%
VST L0	0.3%
VST L1	0.3%
VST L2	0.8%
VST L3	0.8%
VST L4	1.6%
Total	4.0%

WP2: TPC+VST versus TPC only

- Simulation: TPC + 4 layer VST (20 x 20 μm² pixels)
 - Pions generated from (0,0,0) and $|\eta|$ < 1

- Momentum resolution is a function of track length
- Pointing resolution is dominated by first layer of VST

white the